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1  Introduction 
 
Spatial Data Interpolation (SDI) is widely used in GIS (Geographical Information 
Systems) areas such as natural resource modeling [1] and spatial decision support systems 
(SDSS) [2][3] to generate continuous surfaces maps. In the real world, it is impossible to 
exhaustively sample data at every desired location because of time and cost constraints. 
Spatial Interpolation allows the estimation of attribute values at any location within the 
region of interest. It is a computational procedure of estimating/predicting surface values 
for a continuous geo-spatial variable at unmeasured locations within a region where 
discrete sample values are measured. For example, climate data such as precipitation are 
collected from a limited number of scattered weather stations. With Interpolation 
methods, these scattered data can be used to generate precipitation maps covering the 
whole nation.   
 
There are three typical SDI methods: Inverse Distance Weighting (IDW), Spline, and 
Kriging. In IDW, the value of an unmeasured location is calculated as a linear weighted 
combination of sample values within a local neighborhood of the point being estimated. 
The weight of a sample point is assigned according to the inverse of its distance to the 
point being estimated. Spline estimates surface values by fitting a minimum curvature 
surface to the sample data. Kriging, also known as geo-statistics, has more sophisticated 
algorithms. Comparing with the first two, Kriging is more likely to provide a better 
estimation [4], but it is also believed to be the most computational intensive method as 
well.  
 
GRASS provides SDI functionalities through commands such as s.surf.idw, s.surf.rst and, 
s.surf.krig, etc [5]. However, there are two potential drawbacks when applying these 
GRASS tools in modern GIS. The first one is the limited support GRASS provides for 
geo-spatial services in distributed, heterogeneous computing environments. Like most 
traditional GIS, GRASS functions primarily as a single operator system in which 
commands are issued by users. This limits its use in component-oriented distributed 
systems. The second drawback is the poor performance of GRASS SDI tools when used 
in large-scale models. The term performance here refers to the time it takes to execute 
GRASS interpolation commands. The execution time for tasks with various sizes could 
range from seconds to hours. A response time of such a wide range heavily restricts the 
application of GIS on the Web.  
 
The National Agriculture Decision Support System (NADSS) is a web-based decision 
support system built on GRASS. It’s a joint project with the U.S. Department of 
Agriculture (USDA) and the University of Nebraska-Lincoln. SDI is heavily used in the 
NADSS to generate agricultural-climatic data maps for use in drought risk analysis and 
assessment. This work, as part of the NADSS project, proposes a component-based 
spatial data interpolation framework to overcome the two drawbacks stated above. In this 
framework, the interpolation task could be performed either sequentially through a local 
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GRASS library call, or, in parallel by invoking a specific interpolation component on a 
remote High Performance Computer or computer cluster, depending on the task size. The 
requested computing resource is adapted to the task size; hence the response time could 
be fixed in an acceptable range. This paper describes the SDI framework and an 
implementation of a CORBA-based, high-performance Kriging interpolation component. 
Parallel Kriging is implemented in C using the Message Passing Interface (MPI) library. 
In Section 2 we introduce the Kriging algorithm used in GRASS. Section 3 describes our 
proposed high-performance SDI framework and how to integrate GRASS into the 
framework. Section 4 covers the parallel Kriging algorithm used in our high-performance 
Kriging component. Finally Sections 5 and 6 present experimental results and 
conclusions.  
 
2  Kriging 
 
Kriging is a geo-statistical interpolation algorithm developed by Matheron and Krige [10] 
originally for use in the mining industry. Like IDW, Kriging also uses a linear weighted 
combination of a number of neighboring sample values to estimate the value at the 
unmeasured locations. However, Kriging uses a more sophisticated method in weighing 
the neighboring sample points than that of IDW.  It assumes the surface variation over 
space changes with a rate and expresses this rate in a variogram that shows how the 
average difference between values at points changes with distance between points. Thus 
generally there are two steps in a Kriging interpolation [6]. The first step is to construct a 
variogram, and then, the second step is to compute the estimates using the variogram 
model.  
 
2.1 Constructing a Variogram 
 
Usually, a variogram is either experimentally constructed from sample observations or an 
empirical model is used. The most common empirical models [6] are the spherical model, 
the exponential model, the Logarithmic model, the power model and the Gaussian model. 
The spherical model is used in this work. A sample semi-variogram using the spherical 
model is illustrated in Figure 1. The properties of a semi-variogram model include nugget, 
range and sill. 
 

 
Figure 1: A sample semi-variogram [7]. 

 
The nugget is the intercept of the semi-variogram with the vertical axis. The range is the 
distance beyond which there is no spatial correlation. The sill is the maximum semi-
variogram value, which is the plateau in Figure 1. The sill value is reached when the 
distance between two observations is larger than the range. The semi-variogram values 
are small at nearby locations, and they increase to a constant value (sill) as the distance h 
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increases. Hence small semi-variogram values imply high spatial correlation. The 
formulation of the spherical mode is given in Equation (2.1) where a, C0 and C1 are 
constants; C0 is the nugget, C0 + C1 is the sill value, a is the range, and h is distance, 
which is the input variable. 
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The constants are determined experimentally, and their derivation is beyond the scope of 
this work. However, typically, sill = 1 and nugget = 0, but range values are application 
dependent. 
 
2.2  Computing the Estimates 
 
Once the variogram model is constructed, it is used to compute the weights used in the 
Kriging interpolation. To estimate a value at unknown location s0, n nearest neighbor 
sample values are weighted according to the variogram.  Each weight wi used in kriging 
at s0 can be represented as [8]: 
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where n is the  number of neighboring samples, i is the index of the sample locations, hij 
is the Euclidean distance between location i and j. Subscript 0 indicates the unknown 
location s0. µ is a constant which is solved later. Therefore, Equation (2.2) contains n sub 
equations with n  + 1 unknowns (the weights and µ). One more constraint is needed to 
solve all the weights: 
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Thus, by combining Equations (2.2) and (2.3), we could compute the weights using the 
following covariance matrix: 
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where the matrix C consists of covariance values between sample points, the vector D 
consists of covariance values between the sample points and the point being estimated, 
vector w consists of n+1 unknown variables to be solved. In Equation (2.4),  the matrix 
inversion is the most computationally intensive part of the Kriging method, which is 
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computed for each pixel in the  output surface since the nearest sample points vary for 
different pixels.  
 
After weights are calculated, an estimated value can be obtained using a linear 
combination of the neighboring sample values: 
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where  is the estimated value at location s( )0ˆ sv 0; is the observed sample value at 
location s

)( isv
i; n is the number of points used in calculation; and  is the weight of the 

sample data point at s
)( 0swi

i for the estimation of the value at location s0. 
 
3  A GRASS-Based High-Performance SDI Framework 
 
We have developed a high-performance spatial data interpolation framework in which 
GRASS SDI commands can be transformed into distributed SDI components. Section 3.1 
describes a layered architecture on which the GRASS-based SDI framework is 
constructed. Section 3.2 describes a working model of the high-performance SDI 
component. 
 
3.1  A layered architecture for Component-based GIS/SDSS  
 
Figure 2 represents the architecture of a component-based GIS/SDSS system in which 
GRASS is used as a GIS kernel. A layer in the architecture provides services to its upper 
layer. Each layer is independent from its underlying layer given that the interface does not 
change.  

GIS/DSS

Component-based Server

GRASS Library and Helper
Functions

GRASS
 

Figure 2: A GRASS-based GIS/SDSS architecture. 
 

GRASS is at the bottom layer in the architecture. This layer provides basic spatial data 
management and processing functionalities, however it cannot be readily used in a 
distributed environment since GRASS is a command-oriented GIS. Converting these 
GRASS commands into object-oriented methods is crucial for a GRASS-based 
component and is achieved in the second layer.  
 
The second layer provides sophisticated geoprocessing services based on the underlying 
GRASS layer.  The GRASS Library essentially wraps the GRASS commands as a shared 
library with open APIs [9]. In this way the core spatial data processing functions of 
GRASS can be provided to an object-oriented component in a distributed environment 
such as CORBA, DCOM and JAVA RMI. The helper functions provide flexible geo-
spatial functions that are not directly provided by GRASS commands. For example, in the 
GRASS environment, only one active mapset is allowed at a time. This works fine for 
sequential geo-processing modes such as GRASS input commands.  For a distributed GIS 
like NADSS, multiple objects of distributed components may request geo-processing at 
the same time. The GIS is expected to be able to assign one mapset exclusively for each 
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request so that multiple requests can be handled simultaneously. With a helper function, 
component servers in an upper layer can assign each request a free mapset if available. 
 
Component-based servers reside in the third layer in the architecture. This layer provides 
SDI services, mapping services and other domain-specific services for decision support. 
Each component in this layer can be deployed on different platforms in a distributed 
computing environment to optimize resource utilization. 
 

3.2  A high-performance SDI component in NADSS 
 
This section takes Kriging as an example to describe a working model of a high-
performance SDI component. The SDI components in NADSS provide high-performance 
Kriging interpolation services to spatial map servers. 
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Figure 3: A working model of parallel Kriging component 
 
Figure 3 illustrates how the Kriging component works in NADSS. The client side 
applications run on a low-end platform while the server side components are running on a 
high-performance platform such as a parallel computer or a Beowulf computer cluster.  
Detailed structure on the client side exhibits the layered structure. The spatial servers 
belong to the third layer in the architecture described in Section 3.1. It provides mapping 
services to the upper layer and acquires SDI services from the underlying layer. The SDI 
toolset and Kriging Lib belong to the second layer. Each interpolation tool in the SDI 
toolset is associated with an interpolation adapter. The purpose of the interpolation 
adapters is to direct the interpolation request to an appropriate SDI handler. A SDI 
handler here could either be a GIS library call or an interpolation component server. The 
Kriging adapter deals with Kriging requests. It can either perform the Kriging 
interpolation locally through a GRASS library call, or invoke a remote Kriging 
component to carry out the interpolation in parallel, depending on the problem size, to 
achieve an optimal performance. The Kriging adapter communicates with a remote 
Kriging component using a CORBA interface. On the server side, the parallel Kriging 
component is a CORBA-based server implemented in C++ with MPI (the Message 
Passing Interface). The Kriging Server receives input GRASS site data and Kriging 
parameters from the client, initializes the GRASS environment, assigns jobs to multiple 
CPUs, assembles the result and sends it back to the client. The output of the MPI Kriging 
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is saved in the form of GRASS raster data, which is a group of files in the GRASS 
mapset. Before the Kriging component can send the results to the client, the raster data is 
first converted into a single ASCII file. This conversion is accomplished by calling proper 
GRASS library functions in the underlying layer. Therefore both client side and server 
side applications in the working model are conforming to the layered architecture.  The 
scalability of this high-performance SDI model is achieved by running multiple server 
instances on several high-performance computers. The parallel Kriging algorithm is 
discussed in the following Section.     
 
4  Parallel Kriging 
 
Different parallel strategies of Kriging interpolation can be identified in the literature. In 
general, these strategies can be divided into two categories. One is using a parallel 
programming language or parallel library calls on tightly coupled machines [10][11][12], 
the other is applying domain decomposition to the Kriging surface [1][12]. This work 
implements the second parallel strategy.  
 
The output of the Kriging interpolation is a raster map in which Kriging results are stored 
as pixel values. To generate a raster map, values for all the pixels in the raster map need 
to be estimated. In Section 2.2, we introduced the steps to estimate the value of a single 
pixel in the output raster. The Kriging procedure at one pixel is independent from all 
other pixels. That is, the same procedure repeats for each pixel in the raster map. 
Therefore, the Kriging problem naturally fits  a SPMD parallel approach such as domain 
decomposition. 
 
4.1  Domain decomposition 
 

Node
Node

Row 0
Row 1
Row 2

Row kp
Row kp + 1
Row kp + 2

Row kp - 1
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Row n

Less than p rows

Node0

Node
2

Node
1

Node
Node
p-1

L = n/p,
k = 0,…, L

 
 

Figure 4: An illustration of domain decomposition:  n-row raster file with p processors. 
 
Figure 4 presents the implementation of domain decomposition. To generate a Kriging 
raster map with n rows in parallel with p processors. We can choose to decompose the 
domain along either rows or columns. Since the algorithm is implemented in C, which is 
a row major order programming language, we decompose the domain along rows. 
Kriging for one row of the raster map is defined as a primitive task. An inner loop over 
columns is the same for all primitive tasks. Rows in the raster map are assigned in round-
robin fashion to each processor as shown in Figure 4. Node 0 will be assigned rows 0, p, 
2p, …, Lp, node 1 will be assigned rows 1, p+1, …, Lp + 1, and for 0 < i < p, node i will 
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be assigned rows i, p + i, 2p + i, …, and so on. Each node will be assigned at least 
 rows. The remaining n – L rows will be assigned evenly to the first n – L 

processors. In this way, the first n – L processors perform L + 1 primitive tasks whereas 
other processors perform L primitive tasks, and hence a balanced load among the 
processors is achieved. 

⎣ pnL /= ⎦

 
4.2  Implementation 
 
The MPI code employs node 0 as a master node and other nodes as workers. Besides the 
Kriging operations that every node must perform, node 0 is also responsible for all the 
I/O operations during the Kriging interpolation. Prior to the actual interpolation steps, 
node 0 takes care of the initialization job including acquiring the GRASS environment, 
processing input parameters and retrieving site data from the file system. (This is true for 
a shared memory machine in which the GRASS environment variables set by the Kriging 
server are available for all nodes. For a computer cluster, each worker node also has to do 
the GRASS initialization as well.)  After that, node 0 broadcasts the Kriging parameters 
and site data to all the worker nodes using MPI_Bcast. The Kriging parameters contain 
information about the dimension and resolution of the Kriging surface. Worker nodes can 
use this information to locate the rows and columns on the Kriging surface. Each node 
then determines its portion of the Kriging surface according to the decomposition 
algorithm and allocates a local buffer that can hold all Kriging results for the node. Pixels 
on a Kriging surface are interpolated row by row, and for each pixel, the program will go 
through the Kriging steps discussed in Section 2.2. After a pixel is krigged, the estimated 
value is stored in the local buffer, and then the next pixel is processed. No 
communication happens until all the nodes finish their part of the job. A barrier 
(MPI_Barrier) is placed at the beginning and at the end of the Kriging computation so 
that we can separate the communication from computation. This helps in the performance 
prediction, as discussed later. After all nodes have accomplished their Kriging 
computation, worker nodes send their results to the master node by issuing a non-
blocking send call (MPI_ISend). Correspondingly, the master node posts a series of non-
blocking receive calls (MPI_IRecv) for each worker node, followed by a series of waits 
(MPI_Wait). The non-blocking receive calls allow the program to proceed without 
waiting for the sending data to be received [13]. Therefore multiple receive calls can be 
issued in a batch. After the wait calls are finished, all the results are copied to the proper 
place of the cell matrix buffer that stores all the estimated value for the Kriging surface.    
 
5  Results and Discussion 
 
We tested the parallel Kriging component on rcf.unl.edu, a 32 processor SGI Origin 300 
(shared-memory) machine. The client component is running on yeti.unl.edu, a Sun 
workstation. A Kriging interpolation of a Palmer Drought Severity Index (PDSI) [14] on 
a US-wide region was selected as the test problem. Various combinations of output raster 
size, input sample number and working processors are employed in order to fit 
polynomial functions that can be used in predicting the Kriging response time. 
 
5.1  Complexity analysis 
 
We mentioned in Section 3 that the Kriging adapter was capable of choosing an optimal 
computing resource to process Kriging requests depending on the problem size, or in 
other words, the expected response time for a Kriging request. The computing time for 
the Kriging problem can be described by a polynomial of the total number of input 
sample points n and the number of pixels in the output raster map s, given a fixed number 
of the nearest neighboring sample points.  
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)( 2ndncbsaT KKKKK +++=    (5.1) 
 

In the above equation, aK, bK, cK, and dK are platform-dependent coefficients that can be 
determined in experiments. The quadratic term accounts for the computing time spent in 
sorting the sample distances to the Kriging pixel. Equation (5.1) can be used in estimating 
the response time for a request handled by a local GRASS library call.  
 
For a request to be handled remotely by the parallel Kriging component, the complexity 
analysis is a little more complicated. Essentially, the response time is composed of three 
parts: Kriging computation time T’K, message passing communication overhead TC, and 
component latency TL. Equation (5.2) describes the response time for processing a 
Kriging request using a remote parallel component. 
 

LCK TTTT ++= '   (5.2) 
 

In our MPI Kriging implementation, the computation is separated from communication 
among working processors. The computation time for Kriging with a single processor is 
estimated using Equation (5.1). Assuming the parallelism is fully scalable within a 
number of processors, the computation time for parallel Kriging with p processors can be 
obtained by multiply the TK with a factor 1/p.  
 

p
TT K

K ='   (5.3) 

 
The communication in the MPI Kriging mainly occurs at the time when the master node 
collects results from worker nodes. In parallel computing, intensive intercommunication 
may significantly degrade the performance. The implementation alleviates the 
intercommunication in a way that each worker node only sends its results once. For a 
raster map of size s krigged using p processors, each worker processor sends a part of the 
raster result, roughly a size of s/p. Therefore, TC can be approximated by the following 
equation: 
 

psCsCpCCpsCCpTC /)/)(1( 221121 −++−=+−=  
 

As the number of processors increases, the fourth term tends to be insignificant. Thus, the 
communication overhead is bounded by the following polynomial:  
 

scpbaT CCCC ++<   (5.4) 
 

where aC, bC, and cC are constants. The component latency TL in Equation (5.2) represents 
the time incurred due to the use of a remote component instead of a local handler. It 
includes the CORBA communication time, file I/O overhead, and time for spatial data 
operations other than Kriging. Assuming the network transfer rate and I/O bus speed are 
constant, the component latency is linearly related to raster size or the number of pixels in 
output raster map. Equation (5.5) describes the component latency: 
 

sbaT LLL +=   (5.5) 
 
where aL, bL are constant coefficients. 
 
In Section 5.2 we present our experimental results and analyze the timing coefficients  
 



Kun Lu, Steve Goddard 9

5.2  Results 
 
5.2.1  Scalability of the parallel Kriging algorithm 
 
Kriging problems with three different sizes are tested to evaluate the scalability of the 
parallel algorithm. The input sample site number is fixed at 1930 (the number of sample 
stations for an Oct. 2003 PDSI map), while the output raster size varies from 5122, 10242 
to 20482. (The size is changed through map resolutions. The interpolation region is 
unaltered throughout the experiments.) Figure 5 shows how the Kriging time changes 
with the number of processors. The dotted line describes the total time (including 
computation, I/O and communication overhead) spent for a MPI run. Each dot represents 
where a measurement was taken. The solid line describes the time for the Kriging 
computation, i.e. the T’K. Starting from the time for one processor, the Kriging time firstly 
decreases linearly as the processor number increases. Then after some number of 
processors is reached (for size of 5122, and 20482, this number is about 19, for size of 
10242, it is around 25), the time curve becomes flat and irregular. This is because the 
parallel computer (RCF) we used is not available exclusively for this test. Like many real 
world situations, the load on RCF is variable. Most of the time, one third of the 32 
processors in RCF are busying executing other jobs, sometimes even more. When many 
of these running jobs attempt to access the file system, the I/O bus becomes a bottleneck 
for the performance. This explains why sometimes we can achieve better scalability (for 
example, the test for the raster with a size of 10242) than other times (the other two runs 
in Figure 5.).  
 

 
Figure 5: Parallel Kriging time changes with number of processors.  

 
Figure 6 shows the speedup of computation times measured for the 3 tests. The speedup 
is defined as the ratio between sequential Kriging time and parallel Kriging time. The 
time used to compute speedup here is computation time T’K, which does not take 
communication overhead into account. Within a range of processors (here it is 19), the 
MPI Kriging exhibits linear speedup for raster maps of a size from 5122 to 20482. We 
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defined the scaling efficiency for p processors as ratio of speedup to p. Table 1 shows that 
pretty good scaling efficiencies (>95%) are achieved for the three tests. 
 

 
Figure 1: Speedups measured in the test exhibit linear relation to the number of 

processors.  
 

Size of Raster map # proc 5122 10242 20482

1 100% 100% 100% 
2 99.76% 99.41% 99.70% 
4 99.39% 99.58% 99.08% 
8 98.54% 99.45% 98.95% 

16 98.46% 97.09% 97.49% 
19 97.20% 98.61% 95.25% 

Table 1: Efficiency of the parallel Kriging algorithm. 
 
5.2.2  Execution time prediction 
 
Thousands of runs have been made to fit the polynomials discussed in Section 5.1 in 
order to predict the Kriging response time. For the sequential Kriging test, we vary the 
input site number from 50 to 3200, and vary the raster size from 502 to 16002. Thus, each 
test suit contains all possible combinations of 9 different raster sizes and 7 different input 
site numbers. Six identical test suits have been launched at different times of the day on 
different days and the results were averaged to ease of effect of variable load. The 
sequential experiments were conducted on the client host. Combining the computed 
coefficients with polynomial function (5.1) results in polynomial function (5.6): 
 

)1154.67861.651.8(5882.4 2neneesTK −+−+−+=  (5.6) 
 
The fitted polynomial produces the plots shown in Figure 7. The stars in the figure 
represent measured test results, while the solid line is generated by the polynomial 
function. The plots show the polynomial gives a pretty good prediction on sequential 
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Kriging response time.  For parallel Kriging, polynomial function (5.1) can be fit in a 
similar manner with experimental results collected on the server host (RCF). 
 

 
Figure 2: Response time for sequential Kriging 

 
Each test suit used in predicting the parallel Kriging time contains runs in which 6 different 
sample site numbers vary from 50 to 1600 combined with 11 different raster sizes ranging 
from 502 to 20002. The number of processors used in these runs varies from 2 to 16. Identical 
test suits were run multiple times and the results were averaged. In each run, timings for 
COBRA latency, file I/O overhead on RCF, MPI communication overhead and Kriging 
computation time are included in the result. Since RCF is a shared memory computer, the 
communication overhead TC is expected to be small. This is proved by the observation of test 
results. Throughout the test range, the communication overhead never reached 1 second, 
while the file I/O overhead ranges from about 1 second to ten’s seconds, sometimes hundred’s 
of seconds in the worst case. Hence, we exclude the communication overhead when fitting 
Function (5.2). Equation (5.7) gives the result. 
 

psnesnese
seT

/)1109.47514.2401.1926.8(
54344.33949.5

2⋅−+⋅−+⋅−+

+⋅−+=
       (5.7) 

 
The prediction and measured response times are plotted in Figures 8-1 and 8-2 for raster maps 
of size 4002 and 16002, respectively. The figures show the response times for a SDI request 
handled by the remote parallel Kriging component with the number of processors varying 
from 2 to 16. 
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Figure 8-1: raster size = 4002
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erformance Kriging component. With the 
me can be controlled within an acceptable 
ocessors. Experiments were conducted on a 
esults exhibit excellent scalability in our 

rs. The predicted response times fairly agree 
riging inputs. The SDI framework is shown 
e two drawbacks in GRASS SDI support 

omputing resources available, the resulting 
cating response time. The model only works 
 framework. 
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