
Proceedings of the FOSS/GRASS Users Conference - Bangkok, Thailand, 12-14 September 2004

GRASS-based High Performance Spatial Interpolation
Component for Spatial Decision Support Systems

Kun Lu*, Steve Goddard

* Department of Computer Science and Engineering, University of Nebraska-Lincoln, Nebraska,

68588-0115, US, tel. +014024721779, e-mail klu@cse.unl.edu

1 Introduction

Spatial Data Interpolation (SDI) is widely used in GIS (Geographical Information
Systems) areas such as natural resource modeling [1] and spatial decision support systems
(SDSS) [2][3] to generate continuous surfaces maps. In the real world, it is impossible to
exhaustively sample data at every desired location because of time and cost constraints.
Spatial Interpolation allows the estimation of attribute values at any location within the
region of interest. It is a computational procedure of estimating/predicting surface values
for a continuous geo-spatial variable at unmeasured locations within a region where
discrete sample values are measured. For example, climate data such as precipitation are
collected from a limited number of scattered weather stations. With Interpolation
methods, these scattered data can be used to generate precipitation maps covering the
whole nation.

There are three typical SDI methods: Inverse Distance Weighting (IDW), Spline, and
Kriging. In IDW, the value of an unmeasured location is calculated as a linear weighted
combination of sample values within a local neighborhood of the point being estimated.
The weight of a sample point is assigned according to the inverse of its distance to the
point being estimated. Spline estimates surface values by fitting a minimum curvature
surface to the sample data. Kriging, also known as geo-statistics, has more sophisticated
algorithms. Comparing with the first two, Kriging is more likely to provide a better
estimation [4], but it is also believed to be the most computational intensive method as
well.

GRASS provides SDI functionalities through commands such as s.surf.idw, s.surf.rst and,
s.surf.krig, etc [5]. However, there are two potential drawbacks when applying these
GRASS tools in modern GIS. The first one is the limited support GRASS provides for
geo-spatial services in distributed, heterogeneous computing environments. Like most
traditional GIS, GRASS functions primarily as a single operator system in which
commands are issued by users. This limits its use in component-oriented distributed
systems. The second drawback is the poor performance of GRASS SDI tools when used
in large-scale models. The term performance here refers to the time it takes to execute
GRASS interpolation commands. The execution time for tasks with various sizes could
range from seconds to hours. A response time of such a wide range heavily restricts the
application of GIS on the Web.

The National Agriculture Decision Support System (NADSS) is a web-based decision
support system built on GRASS. It’s a joint project with the U.S. Department of
Agriculture (USDA) and the University of Nebraska-Lincoln. SDI is heavily used in the
NADSS to generate agricultural-climatic data maps for use in drought risk analysis and
assessment. This work, as part of the NADSS project, proposes a component-based
spatial data interpolation framework to overcome the two drawbacks stated above. In this
framework, the interpolation task could be performed either sequentially through a local

Kun Lu, Steve Goddard 2

GRASS library call, or, in parallel by invoking a specific interpolation component on a
remote High Performance Computer or computer cluster, depending on the task size. The
requested computing resource is adapted to the task size; hence the response time could
be fixed in an acceptable range. This paper describes the SDI framework and an
implementation of a CORBA-based, high-performance Kriging interpolation component.
Parallel Kriging is implemented in C using the Message Passing Interface (MPI) library.
In Section 2 we introduce the Kriging algorithm used in GRASS. Section 3 describes our
proposed high-performance SDI framework and how to integrate GRASS into the
framework. Section 4 covers the parallel Kriging algorithm used in our high-performance
Kriging component. Finally Sections 5 and 6 present experimental results and
conclusions.

2 Kriging

Kriging is a geo-statistical interpolation algorithm developed by Matheron and Krige [10]
originally for use in the mining industry. Like IDW, Kriging also uses a linear weighted
combination of a number of neighboring sample values to estimate the value at the
unmeasured locations. However, Kriging uses a more sophisticated method in weighing
the neighboring sample points than that of IDW. It assumes the surface variation over
space changes with a rate and expresses this rate in a variogram that shows how the
average difference between values at points changes with distance between points. Thus
generally there are two steps in a Kriging interpolation [6]. The first step is to construct a
variogram, and then, the second step is to compute the estimates using the variogram
model.

2.1 Constructing a Variogram

Usually, a variogram is either experimentally constructed from sample observations or an
empirical model is used. The most common empirical models [6] are the spherical model,
the exponential model, the Logarithmic model, the power model and the Gaussian model.
The spherical model is used in this work. A sample semi-variogram using the spherical
model is illustrated in Figure 1. The properties of a semi-variogram model include nugget,
range and sill.

Figure 1: A sample semi-variogram [7].

The nugget is the intercept of the semi-variogram with the vertical axis. The range is the
distance beyond which there is no spatial correlation. The sill is the maximum semi-
variogram value, which is the plateau in Figure 1. The sill value is reached when the
distance between two observations is larger than the range. The semi-variogram values
are small at nearby locations, and they increase to a constant value (sill) as the distance h

Kun Lu, Steve Goddard 3

increases. Hence small semi-variogram values imply high spatial correlation. The
formulation of the spherical mode is given in Equation (2.1) where a, C0 and C1 are
constants; C0 is the nugget, C0 + C1 is the sill value, a is the range, and h is distance,
which is the input variable.

Spherical model:
⎪
⎩

⎪
⎨

⎧

>+

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+

=

ahifCC

ahif
a
h

a
hCC

h

10

3

10 5.05.1
)(γ (2.1)

The constants are determined experimentally, and their derivation is beyond the scope of
this work. However, typically, sill = 1 and nugget = 0, but range values are application
dependent.

2.2 Computing the Estimates

Once the variogram model is constructed, it is used to compute the weights used in the
Kriging interpolation. To estimate a value at unknown location s0, n nearest neighbor
sample values are weighted according to the variogram. Each weight wi used in kriging
at s0 can be represented as [8]:

)()(0
1

i

n

j
ijj hhw γµγ =+∑

=

, for each i, ni ≤≤1 (2.2)

where n is the number of neighboring samples, i is the index of the sample locations, hij
is the Euclidean distance between location i and j. Subscript 0 indicates the unknown
location s0. µ is a constant which is solved later. Therefore, Equation (2.2) contains n sub
equations with n + 1 unknowns (the weights and µ). One more constraint is needed to
solve all the weights:

∑
=

=
n

i
iw

1

1 (2.3)

Thus, by combining Equations (2.2) and (2.3), we could compute the weights using the
following covariance matrix:

DCw 1−= (2.4)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

µ
nw

w

w
M

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

011
1)()(

1)()(

1

111

L

L

MMOM

L

nnn

n

hh

hh

C
γγ

γγ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
)(

)(

0

10

nh

h

D
γ

γ
M

where the matrix C consists of covariance values between sample points, the vector D
consists of covariance values between the sample points and the point being estimated,
vector w consists of n+1 unknown variables to be solved. In Equation (2.4), the matrix
inversion is the most computationally intensive part of the Kriging method, which is

Kun Lu, Steve Goddard 4

computed for each pixel in the output surface since the nearest sample points vary for
different pixels.

After weights are calculated, an estimated value can be obtained using a linear
combination of the neighboring sample values:

() ∑
=

=
n

i
ii svswsv

1
00)()(ˆ (2.5)

where is the estimated value at location s()0ˆ sv 0; is the observed sample value at
location s

)(isv
i; n is the number of points used in calculation; and is the weight of the

sample data point at s
)(0swi

i for the estimation of the value at location s0.

3 A GRASS-Based High-Performance SDI Framework

We have developed a high-performance spatial data interpolation framework in which
GRASS SDI commands can be transformed into distributed SDI components. Section 3.1
describes a layered architecture on which the GRASS-based SDI framework is
constructed. Section 3.2 describes a working model of the high-performance SDI
component.

3.1 A layered architecture for Component-based GIS/SDSS

Figure 2 represents the architecture of a component-based GIS/SDSS system in which
GRASS is used as a GIS kernel. A layer in the architecture provides services to its upper
layer. Each layer is independent from its underlying layer given that the interface does not
change.

GIS/DSS

Component-based Server

GRASS Library and Helper
Functions

GRASS

Figure 2: A GRASS-based GIS/SDSS architecture.

GRASS is at the bottom layer in the architecture. This layer provides basic spatial data
management and processing functionalities, however it cannot be readily used in a
distributed environment since GRASS is a command-oriented GIS. Converting these
GRASS commands into object-oriented methods is crucial for a GRASS-based
component and is achieved in the second layer.

The second layer provides sophisticated geoprocessing services based on the underlying
GRASS layer. The GRASS Library essentially wraps the GRASS commands as a shared
library with open APIs [9]. In this way the core spatial data processing functions of
GRASS can be provided to an object-oriented component in a distributed environment
such as CORBA, DCOM and JAVA RMI. The helper functions provide flexible geo-
spatial functions that are not directly provided by GRASS commands. For example, in the
GRASS environment, only one active mapset is allowed at a time. This works fine for
sequential geo-processing modes such as GRASS input commands. For a distributed GIS
like NADSS, multiple objects of distributed components may request geo-processing at
the same time. The GIS is expected to be able to assign one mapset exclusively for each

Kun Lu, Steve Goddard 5

request so that multiple requests can be handled simultaneously. With a helper function,
component servers in an upper layer can assign each request a free mapset if available.

Component-based servers reside in the third layer in the architecture. This layer provides
SDI services, mapping services and other domain-specific services for decision support.
Each component in this layer can be deployed on different platforms in a distributed
computing environment to optimize resource utilization.

3.2 A high-performance SDI component in NADSS

This section takes Kriging as an example to describe a working model of a high-
performance SDI component. The SDI components in NADSS provide high-performance
Kriging interpolation services to spatial map servers.

C
O

R
B

A
 interface

Parallel
Kriging

Component

Server Side

K
riging adapter

SDI Toolset

Client Side

Kriging Lib

Spatial Servers

Node
1Node

1Node
1Node

1Node
k

Node
m

Figure 3: A working model of parallel Kriging component

Figure 3 illustrates how the Kriging component works in NADSS. The client side
applications run on a low-end platform while the server side components are running on a
high-performance platform such as a parallel computer or a Beowulf computer cluster.
Detailed structure on the client side exhibits the layered structure. The spatial servers
belong to the third layer in the architecture described in Section 3.1. It provides mapping
services to the upper layer and acquires SDI services from the underlying layer. The SDI
toolset and Kriging Lib belong to the second layer. Each interpolation tool in the SDI
toolset is associated with an interpolation adapter. The purpose of the interpolation
adapters is to direct the interpolation request to an appropriate SDI handler. A SDI
handler here could either be a GIS library call or an interpolation component server. The
Kriging adapter deals with Kriging requests. It can either perform the Kriging
interpolation locally through a GRASS library call, or invoke a remote Kriging
component to carry out the interpolation in parallel, depending on the problem size, to
achieve an optimal performance. The Kriging adapter communicates with a remote
Kriging component using a CORBA interface. On the server side, the parallel Kriging
component is a CORBA-based server implemented in C++ with MPI (the Message
Passing Interface). The Kriging Server receives input GRASS site data and Kriging
parameters from the client, initializes the GRASS environment, assigns jobs to multiple
CPUs, assembles the result and sends it back to the client. The output of the MPI Kriging

Kun Lu, Steve Goddard 6

is saved in the form of GRASS raster data, which is a group of files in the GRASS
mapset. Before the Kriging component can send the results to the client, the raster data is
first converted into a single ASCII file. This conversion is accomplished by calling proper
GRASS library functions in the underlying layer. Therefore both client side and server
side applications in the working model are conforming to the layered architecture. The
scalability of this high-performance SDI model is achieved by running multiple server
instances on several high-performance computers. The parallel Kriging algorithm is
discussed in the following Section.

4 Parallel Kriging

Different parallel strategies of Kriging interpolation can be identified in the literature. In
general, these strategies can be divided into two categories. One is using a parallel
programming language or parallel library calls on tightly coupled machines [10][11][12],
the other is applying domain decomposition to the Kriging surface [1][12]. This work
implements the second parallel strategy.

The output of the Kriging interpolation is a raster map in which Kriging results are stored
as pixel values. To generate a raster map, values for all the pixels in the raster map need
to be estimated. In Section 2.2, we introduced the steps to estimate the value of a single
pixel in the output raster. The Kriging procedure at one pixel is independent from all
other pixels. That is, the same procedure repeats for each pixel in the raster map.
Therefore, the Kriging problem naturally fits a SPMD parallel approach such as domain
decomposition.

4.1 Domain decomposition

Node
Node

Row 0
Row 1
Row 2

Row kp
Row kp + 1
Row kp + 2

Row kp - 1

Row Lp

Row n

Less than p rows

Node0

Node
2

Node
1

Node
Node
p-1

L = n/p,
k = 0,…, L

Figure 4: An illustration of domain decomposition: n-row raster file with p processors.

Figure 4 presents the implementation of domain decomposition. To generate a Kriging
raster map with n rows in parallel with p processors. We can choose to decompose the
domain along either rows or columns. Since the algorithm is implemented in C, which is
a row major order programming language, we decompose the domain along rows.
Kriging for one row of the raster map is defined as a primitive task. An inner loop over
columns is the same for all primitive tasks. Rows in the raster map are assigned in round-
robin fashion to each processor as shown in Figure 4. Node 0 will be assigned rows 0, p,
2p, …, Lp, node 1 will be assigned rows 1, p+1, …, Lp + 1, and for 0 < i < p, node i will

Kun Lu, Steve Goddard 7

be assigned rows i, p + i, 2p + i, …, and so on. Each node will be assigned at least
 rows. The remaining n – L rows will be assigned evenly to the first n – L

processors. In this way, the first n – L processors perform L + 1 primitive tasks whereas
other processors perform L primitive tasks, and hence a balanced load among the
processors is achieved.

⎣ pnL /= ⎦

4.2 Implementation

The MPI code employs node 0 as a master node and other nodes as workers. Besides the
Kriging operations that every node must perform, node 0 is also responsible for all the
I/O operations during the Kriging interpolation. Prior to the actual interpolation steps,
node 0 takes care of the initialization job including acquiring the GRASS environment,
processing input parameters and retrieving site data from the file system. (This is true for
a shared memory machine in which the GRASS environment variables set by the Kriging
server are available for all nodes. For a computer cluster, each worker node also has to do
the GRASS initialization as well.) After that, node 0 broadcasts the Kriging parameters
and site data to all the worker nodes using MPI_Bcast. The Kriging parameters contain
information about the dimension and resolution of the Kriging surface. Worker nodes can
use this information to locate the rows and columns on the Kriging surface. Each node
then determines its portion of the Kriging surface according to the decomposition
algorithm and allocates a local buffer that can hold all Kriging results for the node. Pixels
on a Kriging surface are interpolated row by row, and for each pixel, the program will go
through the Kriging steps discussed in Section 2.2. After a pixel is krigged, the estimated
value is stored in the local buffer, and then the next pixel is processed. No
communication happens until all the nodes finish their part of the job. A barrier
(MPI_Barrier) is placed at the beginning and at the end of the Kriging computation so
that we can separate the communication from computation. This helps in the performance
prediction, as discussed later. After all nodes have accomplished their Kriging
computation, worker nodes send their results to the master node by issuing a non-
blocking send call (MPI_ISend). Correspondingly, the master node posts a series of non-
blocking receive calls (MPI_IRecv) for each worker node, followed by a series of waits
(MPI_Wait). The non-blocking receive calls allow the program to proceed without
waiting for the sending data to be received [13]. Therefore multiple receive calls can be
issued in a batch. After the wait calls are finished, all the results are copied to the proper
place of the cell matrix buffer that stores all the estimated value for the Kriging surface.

5 Results and Discussion

We tested the parallel Kriging component on rcf.unl.edu, a 32 processor SGI Origin 300
(shared-memory) machine. The client component is running on yeti.unl.edu, a Sun
workstation. A Kriging interpolation of a Palmer Drought Severity Index (PDSI) [14] on
a US-wide region was selected as the test problem. Various combinations of output raster
size, input sample number and working processors are employed in order to fit
polynomial functions that can be used in predicting the Kriging response time.

5.1 Complexity analysis

We mentioned in Section 3 that the Kriging adapter was capable of choosing an optimal
computing resource to process Kriging requests depending on the problem size, or in
other words, the expected response time for a Kriging request. The computing time for
the Kriging problem can be described by a polynomial of the total number of input
sample points n and the number of pixels in the output raster map s, given a fixed number
of the nearest neighboring sample points.

Kun Lu, Steve Goddard 8

)(2ndncbsaT KKKKK +++= (5.1)

In the above equation, aK, bK, cK, and dK are platform-dependent coefficients that can be
determined in experiments. The quadratic term accounts for the computing time spent in
sorting the sample distances to the Kriging pixel. Equation (5.1) can be used in estimating
the response time for a request handled by a local GRASS library call.

For a request to be handled remotely by the parallel Kriging component, the complexity
analysis is a little more complicated. Essentially, the response time is composed of three
parts: Kriging computation time T’K, message passing communication overhead TC, and
component latency TL. Equation (5.2) describes the response time for processing a
Kriging request using a remote parallel component.

LCK TTTT ++= ' (5.2)

In our MPI Kriging implementation, the computation is separated from communication
among working processors. The computation time for Kriging with a single processor is
estimated using Equation (5.1). Assuming the parallelism is fully scalable within a
number of processors, the computation time for parallel Kriging with p processors can be
obtained by multiply the TK with a factor 1/p.

p
TT K

K =' (5.3)

The communication in the MPI Kriging mainly occurs at the time when the master node
collects results from worker nodes. In parallel computing, intensive intercommunication
may significantly degrade the performance. The implementation alleviates the
intercommunication in a way that each worker node only sends its results once. For a
raster map of size s krigged using p processors, each worker processor sends a part of the
raster result, roughly a size of s/p. Therefore, TC can be approximated by the following
equation:

psCsCpCCpsCCpTC /)/)(1(221121 −++−=+−=

As the number of processors increases, the fourth term tends to be insignificant. Thus, the
communication overhead is bounded by the following polynomial:

scpbaT CCCC ++< (5.4)

where aC, bC, and cC are constants. The component latency TL in Equation (5.2) represents
the time incurred due to the use of a remote component instead of a local handler. It
includes the CORBA communication time, file I/O overhead, and time for spatial data
operations other than Kriging. Assuming the network transfer rate and I/O bus speed are
constant, the component latency is linearly related to raster size or the number of pixels in
output raster map. Equation (5.5) describes the component latency:

sbaT LLL += (5.5)

where aL, bL are constant coefficients.

In Section 5.2 we present our experimental results and analyze the timing coefficients

Kun Lu, Steve Goddard 9

5.2 Results

5.2.1 Scalability of the parallel Kriging algorithm

Kriging problems with three different sizes are tested to evaluate the scalability of the
parallel algorithm. The input sample site number is fixed at 1930 (the number of sample
stations for an Oct. 2003 PDSI map), while the output raster size varies from 5122, 10242
to 20482. (The size is changed through map resolutions. The interpolation region is
unaltered throughout the experiments.) Figure 5 shows how the Kriging time changes
with the number of processors. The dotted line describes the total time (including
computation, I/O and communication overhead) spent for a MPI run. Each dot represents
where a measurement was taken. The solid line describes the time for the Kriging
computation, i.e. the T’K. Starting from the time for one processor, the Kriging time firstly
decreases linearly as the processor number increases. Then after some number of
processors is reached (for size of 5122, and 20482, this number is about 19, for size of
10242, it is around 25), the time curve becomes flat and irregular. This is because the
parallel computer (RCF) we used is not available exclusively for this test. Like many real
world situations, the load on RCF is variable. Most of the time, one third of the 32
processors in RCF are busying executing other jobs, sometimes even more. When many
of these running jobs attempt to access the file system, the I/O bus becomes a bottleneck
for the performance. This explains why sometimes we can achieve better scalability (for
example, the test for the raster with a size of 10242) than other times (the other two runs
in Figure 5.).

Figure 5: Parallel Kriging time changes with number of processors.

Figure 6 shows the speedup of computation times measured for the 3 tests. The speedup
is defined as the ratio between sequential Kriging time and parallel Kriging time. The
time used to compute speedup here is computation time T’K, which does not take
communication overhead into account. Within a range of processors (here it is 19), the
MPI Kriging exhibits linear speedup for raster maps of a size from 5122 to 20482. We

Kun Lu, Steve Goddard 10

defined the scaling efficiency for p processors as ratio of speedup to p. Table 1 shows that
pretty good scaling efficiencies (>95%) are achieved for the three tests.

Figure 1: Speedups measured in the test exhibit linear relation to the number of

processors.

Size of Raster map # proc 5122 10242 20482

1 100% 100% 100%
2 99.76% 99.41% 99.70%
4 99.39% 99.58% 99.08%
8 98.54% 99.45% 98.95%

16 98.46% 97.09% 97.49%
19 97.20% 98.61% 95.25%

Table 1: Efficiency of the parallel Kriging algorithm.

5.2.2 Execution time prediction

Thousands of runs have been made to fit the polynomials discussed in Section 5.1 in
order to predict the Kriging response time. For the sequential Kriging test, we vary the
input site number from 50 to 3200, and vary the raster size from 502 to 16002. Thus, each
test suit contains all possible combinations of 9 different raster sizes and 7 different input
site numbers. Six identical test suits have been launched at different times of the day on
different days and the results were averaged to ease of effect of variable load. The
sequential experiments were conducted on the client host. Combining the computed
coefficients with polynomial function (5.1) results in polynomial function (5.6):

)1154.67861.651.8(5882.4 2neneesTK −+−+−+= (5.6)

The fitted polynomial produces the plots shown in Figure 7. The stars in the figure
represent measured test results, while the solid line is generated by the polynomial
function. The plots show the polynomial gives a pretty good prediction on sequential

Kun Lu, Steve Goddard 11

Kriging response time. For parallel Kriging, polynomial function (5.1) can be fit in a
similar manner with experimental results collected on the server host (RCF).

Figure 2: Response time for sequential Kriging

Each test suit used in predicting the parallel Kriging time contains runs in which 6 different
sample site numbers vary from 50 to 1600 combined with 11 different raster sizes ranging
from 502 to 20002. The number of processors used in these runs varies from 2 to 16. Identical
test suits were run multiple times and the results were averaged. In each run, timings for
COBRA latency, file I/O overhead on RCF, MPI communication overhead and Kriging
computation time are included in the result. Since RCF is a shared memory computer, the
communication overhead TC is expected to be small. This is proved by the observation of test
results. Throughout the test range, the communication overhead never reached 1 second,
while the file I/O overhead ranges from about 1 second to ten’s seconds, sometimes hundred’s
of seconds in the worst case. Hence, we exclude the communication overhead when fitting
Function (5.2). Equation (5.7) gives the result.

psnesnese
seT

/)1109.47514.2401.1926.8(
54344.33949.5

2⋅−+⋅−+⋅−+

+⋅−+=
 (5.7)

The prediction and measured response times are plotted in Figures 8-1 and 8-2 for raster maps
of size 4002 and 16002, respectively. The figures show the response times for a SDI request
handled by the remote parallel Kriging component with the number of processors varying
from 2 to 16.

Kun Lu, Steve Goddard 12

Figure 8-1: raster size = 4002

The solid line is produced by the polynomia
are the observations from two different runs.
better predictions of response time for a 1600
a size 16 times smaller. For the same output
larger input sample set. This is due to the var
For the same output raster size and number o
to result in a short response time, which is m
than a longer response time. The fitted polyno
both response times for sequential Kriging an
polynomial functions. Currently, the Krigin
that results in a shorter response to process t
the requested computing resource is alway
should consider other factors such as resou
however, is beyond the scope of this paper.

6 Conclusions

This work provides a high performance SDI
integrated with component technology and pa
performance SDI service in a distributed
interpolation as an example, we implemented
NADSS to study agricultural-climatic proble
estimate the response time of the high-p
prediction results, the Kriging processing ti
range by adjusting the number of working pr
32 processors shared-memory computer. R
parallel algorithm within a range of processo
with the experimental results for a range of K
to be an effective solution to overcome th
identified in the beginning of this paper.

However, due the limits of experimental c
timing model is not ideal for accurately predi
when a cluster is used exclusively for the SDI

Figure 8-2: raster size = 16002
l function (5.7). The asterisk and star marks
For both runs, the polynomial function gives
2-raster map than those for a raster map with
 size, better predictions are obtained with a
iable file I/O overhead on the host computer.
f processors, a small input sample set tends
ore vulnerable to the system load variability
mial is used in the Kriging adapter in which
d parallel Kriging are estimated using these

g adapter simply chooses a Kriging handler
he request. This simple mechanism assumes
s available. A more practical mechanism

rce management and request priority. This,

framework in which GRASS commands are
rallel computing technology to provide high

 computing environment. Taking Kriging
 a high-performance Kriging component for
ms. A predictive model is also presented to
erformance Kriging component. With the
me can be controlled within an acceptable
ocessors. Experiments were conducted on a
esults exhibit excellent scalability in our

rs. The predicted response times fairly agree
riging inputs. The SDI framework is shown
e two drawbacks in GRASS SDI support

omputing resources available, the resulting
cating response time. The model only works
 framework.

Kun Lu, Steve Goddard 13

References

[1] J.A. Pedelty, J.T.Morisette, J.L. Schnase, J.A.Smith, High Performance Geostatistical

Modeling of Biospheric resources in the Cerro Grande Wildfire Site, Los Alamos,
New Mexico and Rocky Mountain National Park, Colorado, Proceedings of the
“Earth Science Technology Conference (ESTC) ”, 2003.

[2] S. Goddard, S. K. Harms, S. E. Reichenbach, T. Tadesse and W.J. Waltman,

Geospatial Decision Support for Drought Risk Management, ”Communications of the
ACM”, Vol. 46, No. 1, pp. 35-37, 2003.

[3] S. Wang, D.A. Bennett, M.P. Armstrong, R. Rajagopal, and E. Brands, Using Grid-

Enabled Teleimmersive Spatial Decision Support Systems (TIDSS) to Visualize
Uncertainty for Water Quality Protection in Agroecosystems, Proceedings of
the ”International Conference of Geoinformatics’2002”, Nanjing, P.R. China, June,
1-3, 2002.

[4] S. Anderson, An Evaluation of Spatial Interpolation Methods on Air Temperature in

Phoenix, AZ, Department of Geography, Arizona State University[online], available:
http://www.cobblestoneconcepts.com/ucgis2summer/anderson/anderson.htmT.

[5] GRASS Geographic Information System Information, [Online], available:

http://www.cecer.army.mil/grass/GRASS.main.html.

[6] Ying Ma, Interpolation of Precipitation and the Standardized Precipitation Index (SPI),

Master Project Report. 2003.

[7] A.D. Hartkamp, Interpolation Techniques for Climate Variables, “Geographic

Information Systems Series 99-01”, Natural Resources Group, 1999.

[8] Chao-yi Lang, Kriging Interpolation, Computer Science, Cornell University [online],

available http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/cs490-
94to95/clang/kriging.html.

[9] Introduction to GRASSLib, [Online], available: http://nadss.unl.edu/grasslib.

[10] K.Kerry and K.Hawick, Spatial Interpolation on Distributd, High-Performance

Computers, “DHPC Technical Report DHPC-015”, Department of Computer Science,
University of Adelaide, 1997.

[11] K.Kerry and K.Hawick, Kriging Interpolation on High Performance Computers,

Proceedings of the “High Performance Computing and Networks Europe”. LNCS
1401, Springer-Verlag 1998.

[12] Jason Morrison, Kriging in a Parallel Environment [online], available:

http://citeseer.nj.nec.com/498126.html.

[13] M. J. Quinn, ”Parallel Programming in C with MPI and OpenMP”, pp. 93, 2004.

[14] Palmer, W.C. (1965). Meteorological Drought. “Research Paper No. 45”, US.

Department of Commerce Weather Bureau, Washington D.C.

http://www.cobblestoneconcepts.com/ucgis2summer/anderson/anderson.htm
http://www.cecer.army.mil/grass/GRASS.main.html
http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/cs490-94to95/clang/kriging.html
http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/cs490-94to95/clang/kriging.html
http://nadss.unl.edu/grasslib
http://citeseer.nj.nec.com/498126.html

	GRASS-based High Performance Spatial Interpolation Component
	1 Introduction
	2 Kriging
	Constructing a Variogram
	2.2 Computing the Estimates

	3 A GRASS-Based High-Performance SDI Framework
	3.1 A layered architecture for Component-based GIS/SDSS
	3.2 A high-performance SDI component in NADSS

	4 Parallel Kriging
	4.1 Domain decomposition
	4.2 Implementation

	5 Results and Discussion
	5.1 Complexity analysis
	5.2 Results
	5.2.1 Scalability of the parallel Kriging algorithm
	5.2.2 Execution time prediction

	6 Conclusions
	References

